世界今头条!我国科学家成功创制极化激元晶体管 显著提升纳米尺度光操控能力
长三角G60激光联盟导读
(相关资料图)
据悉,国家纳米科学中心研究员戴庆团队成功创制极化激元晶体管,显著提升纳米尺度光操控能力,相关研究以“ Gate-tunable negative refraction of mid-infrared polaritons ”为题发表在《SCIENCE》上。
人民网北京2月11日电 (记者赵竹青)纳米尺度的光电融合是未来高性能信息器件的重要发展路线。如何在微纳,甚至原子尺度对光进行精准操控是其中最关键的科学问题。记者近日从中国科学院获悉,国家纳米科学中心的戴庆研究团队率先提出利用极化激元作为光电互联媒介的新思路,充分发挥它对光的高压缩和易调控优势,不仅有望实现高效光电互联,还可以提供额外的信息处理能力,从而进一步提升光电融合系统的性能。
极化激元“晶体管”的光学显微镜照片。(国家纳米科学中心供图)
该团队通过十多年的不懈努力,实现了极化激元的高效激发和长程传输。在此基础上,设计并构筑了微纳尺度的石墨烯/氧化钼范德华异质结,实现了用一种极化激元调控另一种极化激元开关的“光晶体管”功能。研究表明该晶体管可实现光正负折射的动态调控,类似电子晶体管能切换(1,0)两个高低电位,为构筑与非门等光逻辑单元提供重要基础。该研究充分发挥了不同材料的纳米光子学特性,从而突破了传统结构光学方案如使用人工结构(超材料和光子晶体等)在波段、损耗、压缩和调控等多个方面的性能瓶颈。
与电子相比,光子具有速度快、能耗低、容量高等诸多优势,被寄予未来大幅提升信息处理能力的厚望。因此光电融合系统被认为是构建下一代高效率、高集成度、低能耗信息器件的重要方向。光电互联(电—光—电转换)是光电融合主的基础,它相当于光电两条高速公路交汇的收费站。而现有硅基光电集成方案存在效率低(依赖多次光电效应)、体积大(光模块无法突破衍射极限)等问题,严重制约光电器件之间的信息流转。然而,光子不携带电荷且光的传输受限于光学衍射极限,相比于能轻易通过电学调控的电子,对光子的纳米尺度局域和操控并不容易。
极化激元“晶体管”的基本原理示意图。(国家纳米科学中心供图)
极化激元是一种由入射光与材料表界面相互作用形成的特殊电磁模式(表面波)。它具有优异的光场压缩能力,可以轻易突破光学衍射极限从而实现纳米尺度上光信息的传输和处理。
国家纳米科学中心戴庆团队以攻克高速光电互联这一世界技术难题为目标,率先提出利用纳米材料的表面波(极化激元)做为媒介,实现高效光电互联的新思路。构筑光—极化激元—电转换路径相当于将高速公路的收费站改造成立交桥,具有显著优势:效率高——光/电激发材料表面波的效率相比光电效应提升潜力巨大;集成度高——光波转化成材料表面波可将波长压缩百倍轻松突破衍射极限,从而显著提升光模块集成度;算力强——材料表面波具有光子性质可进行高效并行计算,从而将现有光电融合的“光传输、电计算”拓展成为“光传输、电计算+光计算”,实现“1+1>2”的效果。
团队负责人戴庆研究员表示,“我们利用电学栅压对极化激元这种光波的折射行为实现了动态调控,使其从常规的正折射转变到奇异的负折射。这就好比可以像操纵电子一样操纵光子,为将来高性能光电融合器件与系统的发展提供重要促进作用。这项研究在应用上面向光电融合器件大规模集成缺乏高效、紧凑光电互联方式的重大需求,在科学上为解决突破衍射极限下高效光电调制的难题提供新思路”。
相关研究成果2月10日发表在国际学术期刊《科学》。“这是一项非常有趣的研究。”该论文审稿人评价说,“这证实了一项非常规的物理现象,为研究纳米尺度的光操控提供了崭新的平台。”
文章来源:人民网
长三角G60激光联盟陈长军转载