纳维-斯托克斯方程是什么意思?N-S方程的求解是?
纳维-斯托克斯方程是什么意思?
纳维-斯托克斯方程(英文名:Navier-Stokes equations),描述粘性不可压缩流体动量守恒的运动方程。简称N-S方程。粘性流体的运动方程首先由纳维在1827年提出,只考虑了不可压缩流体的流动。泊松在1831年提出可压缩流体的运动方程。圣维南与斯托克斯在1845年独立提出粘性系数为一常数的形式,都称为Navier-Stokes方程,简称N-S方程。三维空间中的N-S方程组光滑解的存在性问题被美国克雷数学研究所设定为七个千禧年大奖难题之一
N-S方程的求解
从理论上讲,有了包括N-S方程在内的基本方程组,再加上一定的初始条件和边界条件,就可以确定流体的流动。但是,由于N-S方程比欧拉方程多了一个二阶导数项
,因此,除在一些特定条件下,很难求出方程的精确解。
可求得精确解的最简单情况是平行流动。这方面有代表性的流动是圆管内的哈根-泊肃叶流动(详见管流)和两平行平板间的库埃特流动(详见牛顿流体)。
在许多情况下,不用解出N-S方程,只要对N-S方程各项作量级分析,就可以确定解的特性,或获得方程的近似解。
标签: 纳维-斯托克斯 方程是什么N-S方程的求解